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| Saw Thaton TV.....

CBS — 60 Minutes, 2009



“mind reading” “thought identification”

What can we really do?
R ¢ L

“prediction” “decoding”



Let’ s Read Some Brains

) Training
2) Test



|) Training

Face-selective cortex
(Fusiform Face Area, FFA)

S#1 Axial S#1 Coronal

S#2 Axial S#2 Coronal

Kanwisher et al. (1997).]. Neurosci., 17,4302-431 |

Scene-selective cortex
(Parahippocampal Place Area, PPA)

Epstein and Kanwisher (1998). Nature, 392, 598-601
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2) Test
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Brain activity € -2 Stimulus

* Decoding models

— Uses voxel activity to predict stimulus information

* Encoding models

— Explicit description of how information is represented in activity of
single voxels

Naselaris et al (2011). Neuroimage.



Brain activity € -2 Stimulus

* Decoding models

— Uses voxel activity to predict stimulus information

Naselaris et al (2011). Neuroimage.



“brain reading” “classification”

“prediction” “decoding”



Univariate vs. Multivariate

* Classic fMRI analyses = univariate

— Each voxel considered independently

* Multivariate
— Responses of voxels considered jointly

— Pattern of response
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Euclidean Distance
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Support Vector Machine (SVM)
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Linear Classifiers

* Euclidean distance

* Correlation

* Linear SVYM

* Fisher Least Discriminant Analysis

* Neural networks (without hidden layer)

* Gaussian Naive Bayes Classifiers

Non-linear classifiers increase risk of overfitting




Object representations in ventral
temporal cortex (Haxby et al, 2001)

* Participants viewed
blocks of images from

8 categories
* |-back task

* Split-half correlation
analysis




Correlation
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Response Response
to Faces to Houses  jii wliEEs




Response | Response
to Chairs to Shoes
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Decoding Accuracy

Table 1. Accuracy of identification of the category being viewed based on the patterns of response evoked in ventral temporal cortex. Accuracies are the
percentage of comparisons between two categories that correctly identified which category was being viewed.

iFi 1 0,
Volume Identification accuracy (%)

Region (cm? + SE)

Faces Houses Cats Bottles Scissors Shoes Chairs Scrambled

All ventral temporal 229+ 28 100*** 100*** 98 = 2%%* 90 = e¥** 92 + E¥** Q2 = T¥¥¥ Qgp £ ¥ 100***
object-selective cortex
Minus regions that were 154+ 1.8 100*** 100*** 95 = 2%** 89 = g*** 85+ 9** 90 = 8** 98 + 1*** 100***
maximally responsive to
categories being compared
Regions maximally
responsive to:
Faces 3.1*09 94 & TH** 99 = 1*** 76 = 13* 70 =16 77 £11% 92 £ 7***
Houses 9.6 1.8 100*** 100*** 88 + S*** 96 = 2*** 94 & 3EH* 100***
Cats 26*+04 96 * 4*** 96 = 2*** 82 *+ 8** 76 = 9% 95 & 4¥** 100***
Small objects 6.9+ 1.1 100*** 100*** 95 & 3%+ 94 = 6%** 90 = 6*** 96 * 4¥**

Differs from chance (50%): *, P < 0.05; **, P < 0.01; ***, P < 0.001.



Decoding Orientation in Early Visual Cortex
(Kamitani and Tong, 2005)




Highly accurate decoding of orientation
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Decoding Attended Orientation
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Perception, working memory and imagery
(Albers et al, 201 3)




Decoding of mental images

Working Memory Imagery

cued stimulus
mmmm uncued stimulus
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Decoding across working memory,
iImagery and perception

Table S1. Decoding Accuracies for the Different Classifiers in V1, V2, V3, and V1-V3
Decoding based on
perception

WM-WM IM-IM IM-WM WM-IM VS-WM VS-IM

Area Decoding within condition Decoding across conditions

446% 416% 413% 38.7% 401" 432%
50.8% 440% 436% 41.7% 452% 46 1%

52.4% 46.0% A46% 42 5% A4.4% 46 1%

54.2% 461% 455% 452% 46.4% 485%




Limitations of Early Decoding Studies

Kamitani and Tong (2005)

* Restricted stimulus domains

. . / m
— Oriented lines /////?/ I
Haxby et al (2001)

-

— Small number of selected categories

* No decoding of novel stimuli or categories
[but see Spiridon and Kanwisher(2002)]



Decoding Dreams
(Horikawa et al, 2013)

Yes, well, | saw a person. Yes. What it was... It was something like a scene that Total
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Machine learning decoder
fMRI activity pattern assisted by
before awakening lexical and image databases




Brain activity € -2 Stimulus

* Encoding models

— Explicit description of how information is represented in activity of
single voxels

Naselaris et al (2011). Neuroimage.



Model-based approach to decoding
(Kay et al, 2008)

|) Characterize relationship between visual stimuli and fMRI
activity (i.e. build a model)

—  Complex, natural visual images
—  Early retinotopic visual cortex

2) Measure fMRI activity to one of many possible novel
images

3) Compare actual activity to predicted activity for full set of
novel images to determine which image was viewed



Large gray-scale images

20° /500 px




|) Build 2 Model

Stage 1: model estimation
Estimate a receptive-field model for each voxel
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RF model for one voxel

Subject S1, voxel 42205, area V1
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Novel Image to be Identified

Stage 2: image identification
(1) Measure brain activity for an image
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Compare observed to predicted activity

(2) Predict brain activity for a set of images using receptive-field models
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Set of Receptive-field models Predicted voxel
images for multiple voxels activity patterns

(3) Select the image () whose predicted brain activity is most similar to
the measured brain activity




Performance
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Additional results

* Works on single trials
* Not just retinotopy

* Accurate even with long delay between
model fitting and testing



Limitations of Kay et al.

Still requires comparison with set of candidate images

Will likely fail with more homogeneous images (e.g. two
faces)

Whole image comparison

— What about same central object on different
backgrounds?

How sensitive to fixation differences!?
Novel subjects!?

Visual perception is dynamic



Semantic space

« Huth et al (2012). A continuous semantic space
describes the representation of thousands of object
and action categories across the human brain.
Neuron.

 http://gallantlab.org/brainviewer/



Visual Image Reconstruction
[Miyawaki et al (2008)]

* Model based decoding

* Characterize relationship between activity
and contrast of local image patches

* Use activity to predict contrast within
Image



Presented image
(10 x 10 patches)

Local image bases
(elements)

Reconstructed
contrast pattern

fMRI signals

Multi-voxel
pattern
decoders

Multi-scale
image
representation




Image presentation




Reconstructions
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Limitations of Miyawaki et al

 Similar limitations to Kay et al.
* Simple, non-natural stimuli

* Small image size

For extension of Kay et al. into reconstruction, see
Naselaris et al (2009)




Applications for fMRI brain reading

1) Understanding how information is
represented in the brain

2) Lie detection?
3) Prosthetic devices?
4) Disorders of consciousness



Disorders of consciousness

* Vegetative state
* Locked-in syndrome

* Enabling communication in the
absence of overt motor behavior



Decoding Tasks

A Healthy Controls

Motor Imagery Spatial Imagery
(playing tennis) (walking house)

Owen et al (2006); Monti et al (2010)



54 patients with severe brain injury

A Healthy Controls B Patient 54




A “Is your father's name Alexander?” “Yes” response with the use B “Do you have any brothers?” “Yes” response with the use
of motor imagery of motor imagery

C “Is your father's name Thomas?” “No” response with the use D “Do you have any sisters?” “No” response with the use
of spatial imagery of spatial imagery




Real time fMRI spelling

Onset delay
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Sorger et al (2012)



Real time fMRI spelling

participant stated

uestion

“What is your
hobby?*

“Where did you

“Where did you
spend your
most recant
vacation?"

"What is y
hobby?

“What are you
interested in?”

spend your
most recant
vacaton?*

initial question

stated
uestion

What did you

last?"

What did you
ke mostin
pe

“What do yed
ol f most
cal for
e

‘What is your
favornite
topic?

‘Which

did you

What did you
ke most in
o

follow-up question




“mind reading” “thought identification”

What can we really do?
R ¢ L

“prediction” “decoding”
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Resources

« SVM toolbox

— http://www.csie.ntu.edu.tw/~cijlin/libsvm/
* Python MVPA toolbox
— http://lwww.pymvpa.org/

 Princeton MVPA toolbox

— http://code.google.com/p/princeton-mvpa-
toolbox/







